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Abstract. We consider a system of N particles which are conhed to the surface of a sphere 
and which interaci via a potential that depends logarithmically on their separation. The ground- 
state properties of this system are investigated for N = 2 to 65. Unlike the case of Coulomb 
interactions this system has ground-state Configurations with zero dipole moment for all N. The 
thermal properties of a selected set of systems in the range N = 2 to 500 are determined by 
Monte Carlo simulation. The results are compared with analytid calculations in the small- and 
large-N limits. 

1. Introduction 

We re-visit an old problem in mathematical physics, which has been presented as having 
applications in a wide range of subject areas. The general problem is to find the minimum- 
energy configuration of a system of particles (or disclinations, molecules, pores or fuel 
depots) located on the surface of a sphere. The particles are subject to a repulsive pair 
interaction of the form u(r) cx r-”,  with r the length of a chord connecting the two particles 
[I]. In the l i t  n + CO the problem is commonly called the Tammes problem [2] after a 
Dutch botanist who was interested in the pattern of orifices in spherical pollen grains. The 
Tammes problem is equivalent to that of finding the largest radius of N non-overlapping 
circles on a sphere. 

A related, but conceptually simpler problem was posed by Kepler almost 400 year$ ago. 
In that case the problem was to find the densest packing of spheres in a Euclidean space. 
In three dimensions ‘mathematicians believe and physicists know’ that the solution is one 
of the two closed packed lattices (hexagonal closed packed or face-centred cubic), while in 
two dimensions the solution is a triangular lattice [3, 41 . The reason the situation is more 
complicated in the curved space of a spherical surface is that it is not possible to cover 
the surface with a triangular lattice without defects. It is easy to understand that in the 
case of special numbers such as N = 7, 11,23 there will be a great deal of frustration, and 
that complicated configurations will result [5].  However, it is surprising that in many cases 
when high-symmetry configurations are available, such as an inscribed Platonic solid, the 
high-symmetry configuration is~often not the favoured solution [6]. This can be partially 
understood if one notes that the particles are most closely packed if the coordination number 
(number of nearest neighbours) is high. For example, in the case of the inscribed cube the 
average coordination number is 3. If, however, two opposing faces are rotated relative to 
each other by 45 degrees, the number of nearest neighbours can be increased to four (see 
figure 3). 
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Interest in the problem of N equal Coulomb charges on a sphere, n = I, began with the 
J J Thomson plum ppdding model of the atom [7, 81. Although the original motivation was 
quickly made obsolete by the advent of quantum mcchanics, interest in the mathematical 
problem has continued. A practical motivation was provided by Hansen et al [9] who 
performed molecular dynamics simulations of ionic liquids on a sphere in order to avoid 
having to perform computationally intensive Ewald sums at each time step. The ground 
states for Coulomb charges on a sphere have recently been reviewed by Erber and Hochey 
[lo]. The thermodynamic limit for charges on a sphere N -+ CO has been studied by 
Korevaar [ill. 

Here, we address the case of logarithmic interactions, n = 0, on a sphere. Finite 
temperature Monte Carlo simulations on this system have previously been carried out for 
N = 104, 160 and 256 by Caillol etal [12]. The corresponding problem in two-dimensional 
electrostatics of finding the equilibrium configurations of charges on a disk with a uniform 
neutralizing ('jellium') background has been studied by a number of authors (see, e.g., 
Choquard and Clerouin [13] and de Leeuw and Perram [14]), and was recently re-discovered 
by Kogan et al 1151. 

The logarithmic potential is of interest when considering the thermodynamic limit of 
many particles on a large sphere. In rhis case it is tempting to describe the system in terms 
of dischations distorting a triangular lattice with logarithmic interactions between nodes. 
Recently, Lubensky and Prost [16] examined the vortex defects in the hexatic phase of a 
liquid crystal confined to a closed surface with spherical topology. They determined that 
the longest-range interaction between the defects was logarithmic in the chord separating 
them. 

In this paper, we determine the ground states and low-temperature thermodynamics of 
a discrete number N of particles with logarithmic pair potentials, where the particles are 
confined to a spherical surface embedded in three dimensions. In section 2 we show that 
the logarithmic interaction yields ground-state configurations with zero net dipole moment 
for any N ,  in contrast to the Coulomb case where a number of ground-state configurations 
exhibit a net dipole moment [IO]. We also determine the asymptotic form of the ground state 
for large N and compare with the ground-state energy for N = 2 to 65 from simulations. 
In addition we classify the ground-state configurations according to their chirality and 
properties of the moment of inertia tensor. 

In section 3, we investigate the thermodynamics of a selected set of systems in the 
range N = 2 to 500 at low temperature via Monte Carlo simulation. We determine the 
heat capacities of these systems and extrapolate their mean energies to zero temperature. A 
summary is given in section 4. 

2. Ground-state properties 

We investigate a system in which the potential energy of N particles, confined to a spherical 
surface, is written as 

where rij is the chord between particles i and j ,  L is an arbitrary length needed to make 
the logarithm dimensionless, and R is the radius of the sphere. In what follows we choose 
L = R. The sum is performed over all particle pairs. The surface is taken to have unit 
radius, so the maximum value of rij is 2. 
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Contrary to the Coulomb case where several lowest-energy configurations exhibit a 
dipole moment [lo], none of the ground-state configurations with the logarithmic potential 
have a dipole moment. To see this, we first note that the force on the ith particle due to all 
the others must be directed radially for any equilibrium configuration (otherwise the charge 
would move along the surface), 

If we multiply both sides of (2) with ii, we see that fi = f (N  - 1) is the same for all i. 
By summing (2) over i, and using the fact that fi - ?j is antisymmehic in i and j ,  we find 
that the dipole moment must vanish. The logarithmic interaction appears to be unique in 
this respect. 

We can obtain andytically two limits for the results for the ground-state energy. First, 
for N = 2, the partition function Z can be determined exactly: 

1nZ = In4n + pIn2 - In - + 1 (3) 

where p is the inverse temperature. From the partition function, we find E2 = - In 2 for 
the ground-state energy, and C/N = 0.5 for the specific heat. 

At large N, a mean-field model can be used to evaluate the energy. The average 
interaction energy of a single particle as a result of its interaction with N - 1 other particles 
is 

(4) 

where p(B,  4)  is the probability of finding a particle at polar angle 0 and azimuthal angle 
~@, given that there is a particle at the north pole (0 = 0). The ground-state energy of the 
system is then given by E =  EN. We can get an estimate of the ground-state energy by 
making the approximation 

c ) 

zn 
E = -4  1 d@ dB p(0 ,  x)ln[2(1- cos@)] sine 

We determine 60 by requiring that 

which gives 0, = m. Substituting into the expression for the energy gives 

E -N’(f ln2-  $) - $ l n N +  N(f In2  - a). (7) 
If a more accurate form is used instead of (5). equation (7) would be modified. However, 
since there will still be an average particle density N/4n and an angle of closest approach 
So - l / a ,  the terms in (7) proportional to N2 and NInN will not be affected. If 
we rescale our unit of length (make R # L) we add a term [N(N - 1)/2]1nL/R in the 
expression for the energy. We can therefore choose the energy term proportional to NZ to 
be zero. We believe the term proportional to N In N to be exact and this term will pre-empt 
the system from having a proper thermodynamic limit. 

We expect to be able to fit the ground-state energy for large N to a formula of the form 

(8) 
N 
4 

E = -NZ($ ln2 - $) - -1nN + I1N + I 2  + . . . 
where I ,  and 12 are fitting parameters. 
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Table 1. Absolute value of ground-state energies, and type of Configuration for N = 2 to 65. 
No =biaxial, C = chid. N- = uniaxial disc-like. I = isouooic. N4 = uniaxial rod-I&. 

N Energy N Energy N Energy 

1 0  2 0.69314718056 N+ 3 1.64791843300 N- 
4 2.94248775904 I 5 4.42050715524 N+ 6 6.23832A62504 I 
7 8.18247786444 N- 8 10.4280177815 N- 9 12.8877527258 N- 
IO 15.5631233890 N+ 11  18.4204797208 ND 12 21.6061452304 I 
13 24.8667218755 ND 14 28.4078130092 N- 15 32.1478762838 N+C 
16 36.1061521620 IC 17 40.2730669612 N+ 18 44.6502872592 N- 
19 49.1988915658 ND 20 54.011 1299746 N- 21 59.0009121351 ND 
22 64.2060077617 I ~ 23 69.5783825925 N-C 24 752139847886 IC 
25 80.9975099902 N D  26 87.0094230570 NDC 27 93.2519864000 N- 
28 99.6586093841 IC 29 106.254571171 NDC 30 113.089255497 NDC 
31 120.110346640 N- 32 127.378867615 I 33 134,747820,824 ND 
34 142.375852271 
37 166.450697524 
40 192.337689917 
43 220.003 477052 
46 249.452540709 
49 280.701 903 118 
52 313.732371 935 
55 348.541 796 281 
58 385.132829792 
61 423.507635991 
64 463.654432987 

NDC 35 150.192058511 
N+ 38 174.880197152 
I 41 201.359206648 
ND 44 229.641801488 
IC 47 259.661159853 
N+C 50 291.528600658 
N-C 53 325.138234695 
NDC 56 360.545899244 
NDC 59 397.728149661 
NDC 62 436.703979238 
NDC 65 477.426426069 

NDC 36 
N- 39 
N+ 42 
I 45 
ND 48 
N+ 51 
ND 54 
NDC 57 
NDC 60 
N-C 63 
NDC 

158.224068426 
183.509 225 712 
2 10.584 51 1 558 
239.453 698253 
270.117949 959 
302.533 673 455 
336.745464 397 
372.741 200 6 18 
410.533 162793 
450.081 239 177 

To determine the ground-state properties numerically, we start an initial configuration 
with the particles randomly distributed on the spherical surface. We then calculate for each 
particle the force from all the other particles, and displace each particle a distance which 
is proportional to the force. This moves the particles off the surface of the sphere, so we 
project the particles back to the surface. The process is repeated and the energy E and dipole 
moment d = xi T is monitored. The~process is stopped when the dipole moment is zero 
within a tolerarice (< and the energy has stabilized to 15 significant figures. The 
calculated ground-state energies are listed in table 1. The calculated ground-state energies 
are also compared to the asymptotic formula (8) in figure 1, with fitted values of II and 12 

given in the figure caption. We see that when N 2 60 the scatter has been reduced to less 
than 1 part in The same argument which was used to obtain (8) can also be used to 
obtain an asymptotic formula for n = 1 (Coulomb case) [IO], of the form 

E = f N z  +clN’/’ - c ~ N  +. . . . (9) 

A plot of the scatter when (9) is fitted to the data of [lo] is shown in figure 2. We see 
that the two figures are remarkably similar, although the ground-state configurations are, in 
fact, different for the two potentials (except for N < 6, N = 12, and somewhat surprisingly 
N = 32 see (figure 3)). 

While ground-state configurations with the logarithmic interaction cannot exhibit a 
dipole moment they can exhibit chirality. Given a set of N points, one can generate a 
second set by doing an inversion about any point in space. The original set is chiral if the 
inverted set cannot be made identical to the first by a series of rotations (we do not need to 
worry about translations since all equilibrium configurations with logarithmic interactions 
have their centre of mass at the origin). Our procedure for establishing if two given point 
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sets can be made identical by a set of rotations is as follows. 

(1) From the coordinates of the original set consfmct the inverted set ri = --ri for all i. 
(2) Take the first two points of the original set and perform rotations about the origin until 

the chord joining the two points is in a 'standard positioh' parallel to the x-axis with 
the midpoint on the positive z-axis (see figure 3). 

(3) Calculate the length of the chord and find the set of pairs of the inverted set which are 
separated by this length within a tolerance. 

(4) Put the chords generated from all the pairs in the standard position. 
(5) Test if the two sets are identical within a tolerance. 

The low-N configurations for which the ground state is chiral are listed in table 1. We 
find for N < 65 that if the ground state with the logarithmic potential is chiral, it will 
be chiral with the Coulomb potential. If it is not, it will not be chiral with the Coulomb 
potential either, although the configurations are mostly different. 

Another way of describing the configurations is through the traceless part of the moment 
of inertia tensor 

In accordance with liquid-crystal terminology we write q ,  -$(q - p ) ,  - i ( p  + q )  for the 
eigenvalues of Q (where q is the eigenvalue which is largest in magnitude). If p and q 
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Figure 3. Polar plots of the ground-state 
configurations for N = 8 (top). N = 16 (middle) 
and N = 32 (bottom). Parallels are separated by 
15'. All configurations are in one of the 'standard 
positions' used in the chirality tests. Left and 
right columns are projections of the upper and 
lower hemisphere on the equatorial plane. The 
N = 16 confi@on is chirol. Note the inversion 
symmetry of the N = 32 ground state. 

are both zero we refer to the configuration as isolropic ( I ) ,  if q > 0, p = 0 it is uniaxial 
rod-like nematic (N+), if q < 0, p = 0 it is uniaxial disk-like and we call it (N-), while 
if p and q are both non-zero it is biaxial with notation (ND). The classification of the 
ground-state configurations in this scheme is listed in the table. 

For N = 47 the biaxiality was found to be quite weak. The ground states with the 
Coulomb potential have the same classification except 

N = 29, which is (NO) with the logarithmic and (N- )  with the Coulomb potential, 
N = 52 which is (N- )  with the logarithmic and (N+) with the Coulomb potential. 

For a num6er of N-values there are more than one stable configuration, the lowest 
of these in energy being the ground state. Suppose we have started up the system with 
either the logarithmic or Coulomb potential, and happened to reach the ground state. Then 
in almost all cases, if we switch from one potential to another, and keep the step size 
small enough, we will evolve into a ground state of the other potential. The exception is 
N = 56, where the ground state of one potential evolves into a metastable configuration 
for the other, and vice versa. Of course, we cannot be sure that we have the true ground 
state in all cases. We reproduce the results of [lo] for the Coulomb potential in almost all 
cases. The exceptions are N = 36 where we find a slightly different ground-state energy 
E = 529.12240838 and a dipole moment < lo-*, and N = 38 and 44. where we find that 
the dipole moment is zero. 

3. The case of non-zero temperature 

Monte Carlo computer simulations allow us to calculate the mean energies of N-particle 
systems at non-zero temperature and to determine the ground-state energies via extrapolation 
to zero temperature. Because the exeapolations require simulation at several non-zero 
temperatures for a given N ,  the method is not as computationally efficient as the approach 
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used in the previous section for finding ground states. Hence, the Monte Carlo simulations 
'are focused on a limited range of N where finite-temperature properiies are of~interest. 

The simulation is performed using the traditional Metropolis algorithm. A system of N 
particles is initialized with the particles randomly placed on the surface of a sphere with unit 
radius. The particles are subject to the Hamiltonian (1). The kinetic energy does not appear 
in the Hamiltonian since we are interested only in equilibrium properties, and the potential 
is independent of momentum. Each particle is described by its polar coordinates 8, q5. On 
each particle in turn, a trial move is made by changing cos0 and q5 randomly within a range 
f 6 s  and f2n8s, respectively. The change in energy associated with the attempted move 
is determined from the Hamiltonian, and the move is conditionally accepted according to 
the Boltzmann weight where j 3  is the inverse temperature. The choice~6s = 0.01 
provides a reasonable acceptance rate for the moves. Because the procedure produces 
configurations which aie highly correlated, not every configuration in the simulation is used 
to construct ensemble averages. Rather, configurations are 'saved' only Ss-* = 104 sweeps 
over the positions, where each particle receives one trial move per sweep. Typically 100 
configurations are used for constructing ensemble averages at each N, ,3 combination. The 
exceptions are N = 2  (300). 3 (ZOO), 200 (40) and 500 (20). where the number in parentheses 
indicates the number of configurations, separated by lo4 sweeps, used at each ,3. 

Each ensemble is used to determine a value for E = (H)/N. It is observed that 6 rises 
linearly with temperature 1/j3 for j3 in the range 1000 to 300. This linear behaviour allows 
us to determine the heat capacity C at low temperatures and to obtain the ground-state 
energy by extrapolation. The absolute statistical accuracy of our calculation for c is about 
IO4. The statistical uncertanties in heat capacity per particle C / N  are about 3%. 

Table 2. Ground-state energy €@ and specific h&t C f N k g  obtained by linear fits to c as a 
function of 118 in the range 5 =lo00 to 300. 

2 
3 
4 
5 
6 
7 
8 

50 
100 
200 
500 - 

- 0.34653i 0.00006 
- 0.54928f 0.00005 
- 0.73577* 0.00008 
- 0.8841531 0.00006 
- 1.03977& 0.000 10 
- 1.16891i 0.00006 
- 1.30326i O.OWO8 
- 5.83067i O.OWO5 
- 10.83383i 0.00002 
-20.66501i 0.00002 
- 49.86661& 0,00004 

0.48i 0.03 
0.463, 0.02 
0.711 0.04 
0.731 0.03 
0.751 0.04 
0.741 0.03 
0.6831 0.04 
1.05rt 0.02 
L05i 0.01 
1.07& 0.01 
1.02i 0.02 

A summary of the Monte Carlo results is shown in table 2. Within the statistical accuracy 
the extrapolated ground-state energies agree with the results of section 2. The Monte Carlo 
ground-state energies were used in the fitting procedure of the previous section to determine 
11 and 12 of (8). The low-temperature heat capacity per particle increases from f at N = 2 
(as can be computed from (3)) to a value close to 1 for large N. This large-N behaviour is 
expected if the particles are in Hooke's-law potentials. 
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4. Conelusious 

We have investigated the properties of a system of particles located on the surface of a sphere 
and interacting with a potential which varies logarithmically with the chord separating the 
particles. One striking difference between the logarithmic and other potentials is that the 
ground states have zero dipole moment for all N in the former case. Except for a few 
special cases, the ground-state configurations will be distinct from those calculated with the 
Coulomb or a short-range potential. Nevatheless, the configurations with different potentials 
are similar in many respects. Because of the long range of the logarithmic interaction the 
ground-state energy does not have a proper thermodynamic limit, but the heat capacity is 
proportional to N and at low temperatures the system behaves as if connected with Hookean 
springs. 
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